PINNER WOOD SCHOOL

MATH CALCULATION POLICY

Approval Authority
Effective From:
Date Ratified by GB:
Next Review Date:Signed by Chair of GB:$1^{\text {st }}$ September 2021$1^{\text {st }}$ September 2022

Pinner Wood Maths Written Calculation Policy 2020-2021

This policy supports the White Rose maths used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

- Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Mathematics Mastery

At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

How to use the policy:

This mathematics policy is a guide for all staff at Pinner Wood and has been adapted from work by the NCETM. All teachers have access to White Rose Maths and we use Collins Maths to do the teaching from. Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used.
For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Addition- EYFS			
Objectives	Concrete	Pictorial	Abstract
- Knows that a group of things change in quantity when something is added. - Find the total number of items in two groups by counting all of them. - Says the number that is one more than a given number. - Finds one more from a group of up to five objects, then ten objects. - In practical activities and discussion, beginning to use the vocabulary involved in adding. - Using quantities and objects, they add two single digit numbers and count on to find the answer. - Solve problems including doubling.	Use toys and general classroom resources for children to physically manipulate, group/regroup Use specific maths resources such as counters, snap cubes, Numicon etc. Use visual supports such as ten frames, part part whole and addition mats, with the physical objects and resources that can be manipulated.	 Use visual supports such as ten frames, part part whole and addition mats with pictures/icons.	A focus on symbols and numbers to form a calculation. $5+2=7$ * No expectation for children to be able to record a number sentence/addition calculation.

Addition- Year 1

Start at the bigger number and counting on	Start with the larger number on the bead string and then count of to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 (The 'Make 10' strategy)	$6+5=11$ Start with the bigger number and use the smaller number to make 10 . Use ten frames.	$3+9=$ Use pictures or a number line. Regroup or Partition the smaller number using the part part whole model to make 10. $9+5=14$ (1) 4	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
Vocabulary	add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, balancing, part, part, whole		

Addition- Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Adding 3 1-digit numbers	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 Following on from making 10, make 10 with 2 of the digits (if nossiblel then add on the third dialt.	$\begin{aligned} & \text { Add together three groups of objects. Draw a } \\ & \text { picture to recombine the groups to make } 10 \text {. } \end{aligned}$	$\begin{aligned} (4+7+6 & =10+7 \\ 10 & =\begin{array}{l} \text { cembirix the two numbers } \\ \text { that mate 10 and ther add } \\ \text { on the remainds. } \end{array} \\ & =17 \end{aligned}$
Adding a 2-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$ *Use of bead strings/Dienes	Number lines Bar Model	$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
Adding a 2-digit number and multiples of 10	Explore that the ones digit does not change	Base 10 may be used above the number line initially. The calculation will be shown alongside the number line to see the connection	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$

Adding two 2-digit numbers (No re-grouping)	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. (Some children may not be ready for place value counters in Y 2) Numicon may also be used	Afer practically uning the base 10 botid ans piace walue coinlers, children can draw the counters to belo them to solve additions. Use number line and bridge ten using part whole if necessary. Base 10 may be used above the number line. The calculation will be shown alongside the number line to see the connection	Partitioning: $\begin{gathered} 2_{20+5}^{25} 4_{40+7}^{1} \\ 20+40=60 \\ 5+7=12 \\ 60+17 \end{gathered}$ Recording addition in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: $\begin{aligned} & 40+7 \\ & 30+5 \\ & \hline 70+12 \\ & \hline O r \\ & 47+25 \end{aligned}$ $\begin{aligned} & 47+20=67 \\ & 67+5=72 \end{aligned}$
Vocabulary	add, more, plus, and, make, altogether, total, equal	uals, double, most, count on, number line, sum, boundary	units, partition, addition, column, tens

Addition- Year 4			
Objective and Strategy	Concrete	Pictorial	Abstract
Using formal written methods of columnar addition where appropriate add numbers with up to 4 digits (with exchange)	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. The calculation will be shown alongside the manipulative used to see the connection	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	$\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$ Continue from previous work to carry hundreds as well as tens.
Add decimals with 2 decimal places, including money.	Introduce decimal place value counters and model exchange for addition.		$£ 23 \cdot 59$ $+€ 7 \cdot 55$ $€ 31 \cdot 14$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.
Vocabulary	addition add, more, and make, sum, total, altog	her, double, near double, half, halve, decimal, decimal point	ns boundary, hundreds boundary,

Addition- Year 5/6			
Objective and Strategy	Concrete	Pictorial	Abstract
add numbers with more than 4 digits.	See Year 4	See Year 4	Children should have abstract supported by a pictorial or concrete if needed.
add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	See Year 4	See Year 4	$\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \\ 111 \\ \hline 23.361 \\ 9.0080 \\ 59.770 \\ +\quad 1 \cdot 300 \\ \hline 93.511 \\ 21 \end{array}$ Insert zeros for place holders.
Vocabulary	addition add, more, and make, sum, total, altogether, double, near double, half, halve, tens boundary, hundreds boundary, decimal, decimal point		

Subtraction

Subtraction- EYFS			
Objectives	Concrete	Pictorial	Abstract
- Knows that a group of things change in quantity when something is taken away - Find one less from a group of five objects, then ten objects. - In practical activities and discussion, beginning to use the vocabulary involved in subtracting. - Using quantities and objects, they subtract two single digit numbers and count back to find the answer.	Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as snap cubes, Numicon, bead strings etc. Use visual supports such as ten frames, part part whole and subtraction mats, with the physical objects and resources that can be manipulated.	3-1 = $6-4=$ 7-2 = $5-3=$ A group of pictures for children to cross out or cover quantities to support subtraction. Use visual supports such as ten frames, part part whole and bar model with pictures/icons.	A focus on symbols and numbers to form a calculation.$10-6=4$3 $?$ 7 $7-3=?$ * No expectation for children to be able to record a number sentence/addition calculation.

Subtraction- Year 1			
Objective and Strategy	Concrete	Pictorial	Abstract
Subtract one-digit and two-digit numbers to 20 , including 0 . Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take ther away counting backwards as you go.	Count back on a number line or track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? (Use your fingers to help you)

Find the difference	Compare objects and amounts Lay objects to represent bar model.		Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister?
Representr and use number bonds and related subtraction within 20 facts Part-part whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what st the other part? $10-6=4$	Use a pictorial representation of objects to show the part-part whole model	5 10 Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?
Vocabulary	equal to, take, take-away, less, minus, subtract, count back, how many left, how much less is...	s, distance between, how many more, how many	fewer/less than, most, least

Subtraction- Year 2

Objective and Strategy	Concrete	Pictorial	Abstract
Subtract a two-digit number and ones, a twodigit number and tens, two two-digit numbers Partitioning to subtract without re- Grouping: 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regroupins. The calculation will be shown alongside the manipulative used	Children draw representations of Dienes and cross off. \square $43-21=22$	$43-21=22$ Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: e.g. $43-21=22$ $\begin{aligned} & 43-21= \\ & 43-20=23 \\ & 23-1=22 \end{aligned}$
Make ten strategy	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$
Vocabulary	equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens units		

Multiplication

MultiplicationEYFS			
Objectives	Concrete	Pictorial	Abstract
- Solve problems including doubling	Counting and other maths resources for children to make 2 equal groups. Physical and real life examples that encourage children to see concept of doubling as adding two equal groups.	Pictures and icons that encourage children to see concept of doubling as adding two equal groups.	$1+1=$ $7+7=$ $2+2=$ $8+8=$ $3+3=$ $9+9=$ $4+4=$ $10+10=$ $5+5=$ $11+11=$ $6+6=$ $12+12=$ Addition calculations to model adding two equal groups.

MultiplicationYear 1			
Objective and Strategy	Concrete	Pictori al	Abstra ct
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate dorebling	Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	 Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$
Repeate d addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuts are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.

		Use pictorial including number lines to solve problembere are 3 sweets in one bag. How many sweets are in 5 bags altogether?	
Understandin g arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.		$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$
Vocabulary	Groups of, lots of, times, array, altogeth	liply	

MultiplicationYear 2			
Objective and Strategy	Concret e	Pictori al	Abstra ct
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeate d addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$Ii1) 111 111 111 	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square
Multiplicatio n is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$Use an array to write multiplication sentences and reinforce repeated addition. $5+5+5=15$ $3+3+3+3+3=15$ $5 \times 3=15$ $3 \times 5=15$

MultiplicationYear 3			
Objective and Strategy	Concret e	Pictori al	Abstra ct
Multiplying two digit number by a one digit number	Show the link with arrays to first introduce the grid method. Move on to using Base 10 to move towards a more compact method.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $\mathrm{TO} \times \mathrm{O}$
Grid method progressing to the formal method.	x T U $\square \square \square$ \square $\square \square \square \square$ 4 rows of 13	$24 \times 3=72$ \times $20 \quad 149$.	x 1 0 8 3 3 0 2 Children to add up each column to find the answer.
Solving problems including missing number problems, integer scaling problems.		Bar model are used to explore missing numbers $4 \times \square=20$	
	Add up each column, starting with the ones making any exchanges needed. The calculatioMadill be shalciulationgside the model chosen to seenthe connection		
Vocabulary	Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up		

Multiplication- Year 4				
Objective and Strategy	Concret e	Pictori al	Abstra ct	

Multiplication Year 5			
Objective and Strategy	Concret e	Pictori al	Abstract 327
Multiply numbers up to 4-digits by a one-digit number using the format written method, including long multiplication for 2-digit numbers Column multiplication for 3 and 4 digits $\times 1$ digit	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is im. portant at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28	
Column multiplication (long multiplication)	Manipulatixprodmay stitlectiatiod with the corresponding lang multiplication modelled atongside	Moving forward, multiply by a 2 digit number showing the different rows within the grid method.$24 \times 16=384$ x 2 0 4 1 0 2 0 0 4 0 6 1 2 0 2 4	24×6 on the first row. ($6 \times 4=24$, carrying the 2 for the 20 , then $6 x$ 2) 24×10 on the second row. Show multiplying by 10 by putting zero (azin*the units first.

Division- EYFS

Objectives	Concrete	Pictorial	Abstract
Solve problems including halving and sharing. - Halving a whole, halving a quantity of objects. - Sharing a quantity of objects.	Children have the opportunity to physically cut objects, food or shapes in half. Counting and other maths resources for children to share into two equal groups. Use visual supports such as halving mats and part part whole, with the physical objects and resources that can be manipulated. Counting and other maths resources for children to explore haring between 3 or more.	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 . Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole. Pictures for children to create and visualise 3 or more equal groups.	

DivisionYear 1				
Objective and Strategy	Concret e	Pictori al		Abstra ct
Division as sharing (sharing objects into groups)	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or s Children use bar mod understanding. $12 \div 4=3$	es to share quantities. 4 gig to show and support	Share 9 buns between three people. $9 \div 3=3$
Vocabulary	share, share equally, one each, two each..., group, groups	f, lots of, array		

DivisionYear 2			
Objective and Strategy	Concret e	Pictori al	Abstra ct
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you an dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide $\mathbf{2 8}$ into $\mathbf{7}$ groups. How many are in each group?
Vocabulary	share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over		

DivisionYear 3			
Objective and Strategy	Concret e	Pictori al	Abstra ct
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24 ? $24 \div 6=4$
Divisio n with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \mathrm{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4=28$ $4 \times 7=28$ $28 \div 7=4$ $28 \div 4=7$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

Divide 2-	' Eva uses a place value grid and part-whole model to solve $66 \div 3$	See part- whole model	
digit numbers by a 1 digit number by partitioni ng into tens and ones using a pv grid			
Divide numbers that involve exchangi n g between the tens and ones. The answers do not have remaind e rs.	Ron uses place value counters to divide 42 into three equal groups He shares the tens first and exchanges the remaining ten for ones. Then he shares the ones. $42 \div 3=14$	Annie uses a similar method to divide 42 by 3 Children may use pictorial representation for the pv counters, alongside the part-whole model Children use their times-tables to partition the number into multiples of the divisor.	$\begin{aligned} & 96 \div 8 \\ & 96 \div 4 \\ & 96 \div 3 \\ & 96 \div 6 \end{aligned}$ Compare the statements using $<,>$ or $=$ $\begin{aligned} & 48 \div 4 \bigcirc 36 \div 3 \\ & 52 \div 4 \bigcirc 42 \div 3 \\ & 60 \div 3 \bigcirc 60 \div 4 \end{aligned}$

DivisionYear 4			
Objective and Strategy	Concret e	Pictori al	Abstra ct
Divide up to 3 digit numbers by 1 digit. Short Divisio n	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder $4 \longdiv { 7 ^ { 3 } 6 } \quad 3 \longdiv { 7 ^ { 1 } 4 7 }$ Children should be aware that a 0 is used to keep place value, if the number is not divisible. Move onto divisions with a remainder. $\begin{array}{rlrrr} & 8 & 6 & r & 2 \\ \hline & & 3 & 3 \end{array}$
Vocabulary	share, share equally, one each, two ea inverse, derive	lots of, array, divide, divided by, divided into, division,	ng, number line, left, left over, product, division facts,

DivisionYear 5			
Objective and Strategy	Concret e	Pictori al	Abstra ct
Divide at least 4 digit numbers by 1 digit. Interpret remainders appropriatel y for the context Short Divisio n	 Use place value counters to divide using the bus stop method alongside Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	$8 \longdiv { 0 6 6 3 } + 5$ Finally move into decimal places to divide the total accurately.
Vocabulary	share, share equally, one each, two each..., g inverse, derive, formal written method.	lots of, array, divide, divided by, divided into, division, gro	number line, left, left over, product, division facts,

Division-Year

6

Objective and Strategy	
Long Division	Step 1 - a remainder in the ones
	n $1 \circ$
	$4 \longdiv { 1 6 4 1 \mathrm { R } 1 }$
	$4 \longdiv { 1 6 5 }$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

th h:
$04000 \mathrm{R7}$
3207

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times ($3,200-8=400$)
8 goes into 0 zero times (tens)
8 goes into 7 zero times, and leaves a remainder of 7
hto

$$
061
$$

$4 \longdiv { 2 4 7 }$ $\begin{array}{r}-4 \\ \hline\end{array}$
When dividing the ones, 4 goes into 7 one time Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3
Check. $4 \times 61+3=247$
th hto

0402
$4 \longdiv { 1 6 0 9 }$
\square
When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1
Check. $4 \times 402+1=1,609$
Step 2 - a remainder in the tens

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t o	t 。
2	2	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
	$\frac{-4}{1}$	$\frac{-41}{18}$
Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens - －but there is a remainder！	To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten	Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18 ．

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$-\frac{4}{18}$	－4 18	－4 18
18	－18	$\begin{array}{r}18 \\ -18 \\ \hline\end{array}$
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

Minimal Resources required to support the CPA approach (depending on year group):

- 10 frames (including egg boxes)
- Straws/pipe cleaners
- Bead strings (to 20 and 100)
- Rekenrek frames
- Base 10/Dienes (including magnetic to model on flip chart)
- Place value grids
- Double-sided counters
- Part-part whole templates
- Place value counters (KS2)
- Multi-link cubes

